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Problems in biological, social or economic environments deal with several agents taking decisions that
affect one another. The main issue is that each agent has a particular way of seeing the world, and wants
to achieve a specific goal. In doing so, it might make it easier or harder for the other agents to achieve their
own objectives. Game theory developed as a formal analysis of these situations and Nash equilibrium is its
central concept. It soon became the gold standard against which all other proposed solutions are compared,
and it provided mathematical footing to social sciences and biology – which would otherwise have to rely on
intuition.

We will see the definition of Nash equilibrium and a couple of examples in simple two player games. I will
prove the existence of equilibria using fixed point theorems. Lastly, I will (partly) present the computational
complexity of finding Nash equilibria and provide references for the interested reader.

1 Normal form games

Definition 1 (Normal form game).
A finite n-person normal-form game is a triple (N,A, u) where:

• N = {x1, . . . , xn} is a set of n players.

• A = A1×· · ·×An, and Ai is a finite set of actions that player i can take. Each element a ∈ A is called
a strategy profile.

• u = (u1, . . . , un) where ui : A→ R is called the utility of xi.

This definition encodes the interaction between the players. Each point a ∈ A corresponds to every player
choosing an action to perform. The function u gives the payoff that each player receives in this scenario.
Each player’s objective is then to maximize their own utility ui. Let’s see some examples.

1.1 Examples

Example 2 (Rock-paper-scissors). Games are usually represented in a matrix:

Rock Paper Scissors
Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

The rows encode the actions player 1 can take. In other words, A1 = {Rock, Paper, Scissors}. In this
game, A2 = A1. Each entry of the matrix is the payoff which represents the usual hierarchy of moves: rock
beats scissors, which beats paper, which beats rock, and everything else is a tie. For example, if player 1
chooses rock and player 2 plays scissors, u(Rock, Scissors) = (1,−1).
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Example 3 (Penalty kick). Another simple game is a penalty kick. Here, a kicker tries to hit the ball into
the goal by shooting either to the right or to the left. The goalie tries to prevent this by jumping to either
side. If the goalie predicts the shot correctly, he stops it. Otherwise, the kicker scores. We can encode this
as a normal form game:

Jump left Jump right
Kick left (−1, 1) (1,−1)

Kick right (1,−1) (−1, 1)

Example 4 (Prisoner’s dilemma). In this game, we have two people that are accused of a crime. They are
given the option to remain silent or to betray and testify against the other player. The payoffs are as follows:

Stay silent Betray
Stay silent (−1,−1) (−3, 0)

Betray (0,−3) (−2,−2)

Here, −n means n years of jail. Notice that the best option is for both players to remain silent. That way
they collectively get the smallest sentence of 1 year.

2 Nash equilibrium

With these examples at hand, we define the central concept:

Definition 5 (Nash equilibrium).
A (pure) Nash equilibrium of the normal form game (N,A, u) is a strategy profile a∗ ∈ A such that for all
i ∈ N ,

ui(a
∗
i , a
∗
−i) ≥ ui(ai, a

∗
−i),

where a∗−i = (a∗1, . . . , a
∗
i−1, a

∗
i+1, . . . , a

∗
n). In other words, it is a choice of moves a∗ where no player can

improve their position by choosing a different move while the others pick the same strategy.

In the previous examples, only the Prisoner’s Dilemma (Example 4) has a Nash equilibrium: both players
have to betray one another. This is a little paradoxical because the optimal strategy is cooperation (i.e. both
remain silent). To understand why, let’s say that the players somehow managed to talk before the interviews
and agreed to cooperate (this is not part of the original game, but will serve our example). In other words,
they set a∗ = (Stay silent, Stay silent). Of course, player 1 might be lying and thinking of betraying player
2, that is, player 1 will choose a1 = Betray. Then

u1(a∗1, a
∗
−1) = u1(Stay silent, Stay silent) = −1, while

u1(a1, a
∗
−1) = u1(Betray, Stay silent) = 0.

Player 1 can obtain a better result by playing something different. This is why (Stay silent, Stay silent) is
not a Nash equilibirium. In contrast, (Betray, Betray) is an equilibrium because the result of a single player
changing strategy is getting more jail time.

However, our intuition suggests that this is not the complete picture. Looking back at Example 3, we
can intuitively say there is an optimal strategy: the kicker has to shoot to the left (or to the right) half of
the time. Otherwise, if he shoots left with probability p 6= 1

2 , the goalie will always jump to the side that
has higher probability and outperform the kicker in the long run. We incorporate this idea by defining:

Definition 6 (Mixed strategy).
Let Si be the space of probability distributions over the set Ai. The product S = S1 × · · · × Sn is called

the mixed strategy profile of the game (N,A, u) and each point s ∈ S is called a mixed strategy. The utility
function is replaced by the expected value of the mixed strategy.

We extend the definition of Nash equilibrium to that of mixed equilibrium by replacing strategy profiles
in Definition 5 with mixed strategies and utilities with expected values.
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Example 7. If Ai = {c1, . . . , cm}, then Si = {(p1, . . . , pm) ∈ [0, 1]m : p1 + · · · + pm = 1}. The number pk
represents the probability that player i chooses to play the move ck. Notice that Si ' ∆m, a compact and
convex set.

Example 8. In Example 3, let Ak = {Kick left, Kick right} and Ag = {Jump left, Jump right} be the
strategy sets of the kicker and the goalie respectively. A mixed strategy for the kicker will be a probability
distribution over Ak, or in other words, a choice of a number p` ∈ [0, 1] that represents the probability of
kicking to the left. Notice that the probability of kicking to the right is pr = 1− p`. Analogously, the goalie
chooses probabilities q`, qr ∈ [0, 1] that represent jumping to the left and to the right respectively. Thus, we
can represent a mixed strategy as a tuple (p`, pr; q`, qr) ∈ Sk × Sg ' ∆1 ×∆1. The utility is replaced by its
expected value over the chosen distribution. For example, the utility of the goalie when the players chose
the strategy (p`, pr; q`, qr) is

E[ug(p`, pr; q`, qr)] =
∑
x∈Ak

∑
y∈Ag

ug(x, y) · Pr[Kicker shoots x] · Pr[Goalie jumps to y]

= p`q` + prqr − p`qr − prq`

= (p` − pr)(q` − qr).

When choosing a mixed strategy, this is the value that the goalie wants to maximize. Analogously, the
utility function of the kicker is the negative of the above value.

The mixed Nash equilibrium in this situation, as remarked before Definition 6, occurs when p` =
pr = 1

2 and q` = qr = 1
2 . To see why, let s∗ = ( 1

2 ,
1
2 ; 1

2 ,
1
2 ) be a mixed strategy profile and s∗−k =

( 1
2 ,

1
2 ) be the mixed strategy of the goalie. Even if the kicker chooses a different strategy sk = (p`, pr),

E[uk(sk, s
∗
−k)] = E[uk(p`, pr; 1

2 ,
1
2 )] = 0. The same holds for the goalie: E[ug( 1

2 ,
1
2 ; q`, qr)] = 0. Since

E[u(s∗)] = E[u( 1
2 ,

1
2 ; 1

2 ,
1
2 )] = (0, 0) (i.e. the expected utility is 0 for both players), this shows that s∗ is

a mixed Nash equilibrium. The expected utility of a player does not improve when deviating from the
equilibrium strategy.

Example 9. The mixed Nash equilibrium in Rock-Paper-Scissors is playing each option with probability 1
3 .

The above example shows that games that have no pure Nash equilibrium can have mixed ones. This is
no coincidence, but a consequence of the following result [3].

Theorem 10. Every finite n-person normal form game has a mixed Nash equilibrium.

Proof: First of all, notice that Si ' ∆mi means that S = S1×· · ·×Sn ' ∆m1 ×· · ·×∆mn ' ∆M ' DM

for some M . In other words, S is compact and convex.
For x, y ∈ S, say that x counters y if ∀i ∈ N and ∀z ∈ S,

E[ui(xi, z−i)] ≥ E[ui(yi, z−i)].

That is, the expected utility for player i when choosing xi is always higher than that of yi, even when
considering any possible choice of strategy z−i from the opponents, and this happens for all choices of i.
Now, define F : S → P(S) by F (x) = {y ∈ S : y counters x} ⊂ S.

The Kakutani fixed point theorem states that if a function F : DM → P(DM ) has F (x) convex for all
x ∈ DM and the graph Γ = {(x, y) : x ∈ DM , y ∈ F (x)} is closed, then F has a fixed point. Namely,
there exists x ∈ DM with x ∈ F (x). We check these two conditions. Since the expected value is linear,
a convex combination of mixed strategies that counter x will also counter x. That is, F (x) is convex.
Also, if (Pn, Qn)n ⊂ Γ is a sequence where Qn counters Pn and coverges to (P,Q), then Q will counter P
because the expected value of the utility is a continuous function of the mixed strategy. More explicitly,
E[u(Qn)]→ E[u(Q)] and E[u(Pn)]→ E[u(P )]. This shows that Γ is closed, and thus, there exists a mixed
strategy x ∈ F (x). This is a self countering strategy by definition of F and a Nash equilibrium.
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3 Computational complexity

Now that we know what a Nash equilibrium is, we can ask how hard is it to find one. The most known
classification of computer algorithms is P and NP . A decision problem is a question whose answer is yes
or no. Such a problem is said to be in P if there exists a deterministic polynomial time algorithm that
can determine whether a solution exists or not. Conversely, NP is the collection of problems for which a
non-deterministic polynomial time algorithm exists instead. However, NASH (the algorithm for finding a
Nash equilibrium) doesn’t fit in this classification because the solution always exists, in other words, it is not
a decision problem. The answer is always yes. Instead, we use another class introduced by [1] called TFNP.
This is the collection of total function problems that can be solved by a non-deterministic polynomial time
algorithm. An example of such a problem is factorization of integers. TFNP is further subdivided by the
mathematical argument used to find the solution. NASH is in the class PPAD, which stands for Polynomial
Parity Arguments on Directed Graphs. The defining problem of PPAD is called End Of the Line (EOL).

Definition 11. EOL Suppose we have a directed graph G with possibly exponentially many vertices. G
satisfies:

• It has at least one source (vertex with no predecessor).

• It has no isolated vertices.

• Every vertex has at most one predecessor and one successor.

• There exists polynomial time algorithms P and S that given a vertex v, they output the predecessor
P (v) and the successor S(v) (provided they exist).

The End of the Line (EOL) algorithm takes as input this graph G and a source vertex. The output is
another source or sink (vertex with no successor). A problem is said to be in PPAD if we can find a solution
by using EOL.

At first glance, EOL doesn’t look like a hard problem. We can explain why by being more precise as to
what it means for G to have exponentially many vertices. The vertices are encoded as an integer between 0
and M in binary form and this requires n = dlog2(M)e bits of storage. As a side note, P and V are defined
to be polynomial time algorithms with respect to n. However, M is at least 2n−1, an exponential quantity in
n. This should clarify the difficulty of EOL: while it is true that we can start at the source vertex and follow
the edges until we hit a sink, there are around 2n vertices to search. The fact that P and V are relatively
fast is overshadowed by the number of times we have to use them.

As it turns out, NASH is PPAD-complete. This means that we can solve NASH by constructing a suitable
graph and using EOL to find a sink. Conversely, we can encode a directed graph as a game in which a Nash
equilibrium represents a sink or source. One more step is required in this construction, shown in the diagram:

NASH � BROUWER � EOL

In other words, we can solve NASH by constructing a continuous function that has a fixed point guaran-
teed by the Brouwer fixed point theorem. Such a point encodes a Nash equilibrium, and we can find it by
using EOL. We will show how to do this, and give a sketch of the other direction. For more details, see [1]
and [2].

3.1 BROUWER → EOL

The Brouwer fixed point theorem says that any continuous function F : [0, 1]m → [0, 1]m has a fixed point.
As it turns out, we can build a suitable graph to use EOL on. We will show how when m = 2.

First, subdivide [0, 1]2 into an very fine M×M grid of triangles (see picture). As before, let n = dlog2(M)e.
Suppose we are given a polynomial time algorithm (with respect to n) that calculates F in the vertices of
these squares. We color each vertex according to where it is sent by F . Namely, if the vector F (x)− x has
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an angle between 0◦ and 90◦, color it yellow; color it blue if the angle is between 90◦ and 225◦ and red if it
is between −135◦ and 0◦.

Notice that the left side of the square has no blue, the bottom has no red and the top has no yellow.
Also, assume that all red vertices on the left side are above all the yellow ones. We can achieve this by
extending the square a little on the left, and slightly modifying F in a way that it is still continuous. As
we saw a couple of talks ago, Sperner’s lemma guarantees that this grid will have a triangle with all three
colors. This means that F is sending all the vertices in different directions. They are either moving into the
interior of the triangle or away from it. In any case, there is a fixed point in the interior. Thus, the vertices
are approximate fixed points, which are sufficient for our purposes.

To find it using EOL, we need a directed graph. Each triangle in the grid will be a vertex of the graph.
We add an edge between two triangles T1 and T2 if they share a side with a red and a yellow vertex. The
edge goes from T1 to T2 if, when we walk on the boundary of T1 clockwise, we go from the red to the yellow
vertex. Notice that we have M2 ∼ 22n triangles. Given a triangle T , we can calculate if it has a red-yellow
edge by calculating F on its three vertices, each polynomially in n. Lastly, notice that the single change
from red to black makes its triangle a source vertex. In summary, we have a directed graph with exponential
number of vertices that has at least one source, and calculating the predecessor and successor of each vertex
can be done in polynomial time. Thus, we can find a sink with EOL. The sink has to be a trichromatic
triangle, so EOL found the promised approximate fixed points.

3.2 NASH → BROUWER

We have to encode NASH as a continuous function on a cube whose fixed point is a Nash equilibrium.
Suppose that all the players picked a mixed strategy, that is, a point x ∈ S ' ∆M ' [0, 1]M . Most often
than not, the players will not be satisfied with this choice, so let them choose another strategy y close to x
and set F (x) = y. Then F is a continuous function [0, 1]M → [0, 1]M that has a fixed point. This is a Nash
equilibrium because players do not want to change their strategy in that situation. Since we can transform
BROUWER into EOL, this shows NASH ∈ PPAD.

3.3 EOL → BROUWER → NASH

This will be a very short summary of the idea. For a more detailed explanation, see [1], and [2] for the
complete details. The EOL to BROUWER transformation is done by embedding the directed graph into
[0, 1]3 and carefully constructing a continuous function F : [0, 1]3 → [0, 1]3 so that the sinks are fixed points.
In turn, the fixed points can be found by building a game with three “input” and three “output” players
that choose between 1 and 0. Let x1, x2, x3 ∈ [0, 1] be the probabilities that each input player chooses 1.
It is possible to add more players to the game so that the probabilities that the three output players pick
1 are the three coordinates of F (x1, x2, x3) ∈ [0, 1]3. A fixed point of this function turns out to be a Nash
equilibrium, so if we have an algorithm for finding Nash equilibria, we can also use it to find the sink of the
original EOL graph. This shows that NASH is PPAD-complete.
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